Контактная информация

map

Санкт-Петербург, Загребский бульвар, 9, вход с Дунайского пр.

(Работаем по будням 9.00-18.00)

Тепловые насосы

Это компактные экономичные и экологически чистые системы отопления, позволяющие получать тепло для горячего водоснабжения и отопления коттеджей за счет использования тепла низкопотенциального источника(тепло грунтовых, артезианских вод, озер, морей,..., грунтовое тепло, тепло земных недр) путем переноса его к теплоносителю с более высокой температурой.Работа теплового насоса схожа с процессом холодильника. Тепловой насос собирает энергию земли, скал, воздуха и солнца для дома и воды. Техника проста, надежна и была известна уже сто лет тому назад. Данный принцип работает в морозильных и холодильных шкафах. С ростом цен на энергию и большими требованиями к окружающей среде увеличилось использование тепловых насосов в качестве отопительных системы в домах. 2/3 отопительной энергии можно получить бесплатно из природы и только 1/3 за счет работы насоса, электричество.Применение тепловых насосов различной тепловой мощности является принципиально новым решением проблемы теплоснабжения и позволяет в зависимости от сезонности и условий работы достигать максимальной эффективности в их работе.Тепловые насосы имеют большой срок службы до капитального ремонта (до 10 - 15 отопительных сезонов) и работают полностью в автоматическом режиме. Обслуживание установок заключается в сезонном техническом осмотре и периодическом контроле режима работы. Срок окупаемости оборудования не превышает 2 - 3 отопительных сезонов.

Принцип работы теплового насоса

Источником тепла может быть скалистая порода, земля, вода или, например, воздух. Охлажденный теплоноситель, проходя по трубопроводу, уложенному в землю (озеро) нагревается на несколько градусов. Внутри теплового насоса теплоноситель, проходя через теплообменник, называемый испарителем, отдает собранное из окружающей среды тепло во внутренний контур теплового насоса. Внутренний контур теплового насоса заполнен хладогеном. Хладогент, имея очень низкую температуру кипения, проходя через испаритель, превращается из жидкого состояния в газообразное. Это происходит при низком давлении и температуре -5оС. Из испарителя газообразный хладогент попадает, а компрессор, где он сжимается до высокого давления и высокой температуры. Далее горячий газ поступает во второй теплообменник, конденсатор. В конденсаторе происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома. Хладоген отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый теплоноситель системы отопления поступает к отопительным приборам. После прохождения через конденсатор жидкий хладогент может быть еще более охлажден, а температура прямой воды системы отопления увеличена посредством дополнительно установленного сабкулера. Давление хладогента, тем не менее, все еще остается высоким. При прохождении хладогента через редукционный клапан давление понижается, хладогент попадает в испаритель, и цикл повторяется снова.